Несколько защитных устройств блоков питания

Несколько защитных устройств блоков питания

25
0

2013-09-16, 13.53.00

Незаменимой частью множественных радиоустройств является стабилизированный блок питания, собранный, как правило, на транзисторах. В процессе работы таких устройств может случится перегрузка блока питания. Особенно частенько это случается с лабораторными блоками, предназначенными для отработки и налаживания самых различных конструкций.

Такие нарушения нормального режима работы устройства нередко приводят к повреждениям его элементов, чаще всего — регулирующего транзистора стабилизатора. При пробое этого транзистора к нагрузке окажется приложенным полное выходное напряжение выпрямителя, часто небезопасное и для нее.

Плавкие предохранители мало спасают от повреждения блока питания и нагрузки, так как нередко регулирующий транзистор стабилизатора выходит из строя раньше, чем перегорит предохранитель. Надежную защиту в этих случаях можно обеспечить с помощью специального электронного защитного устройства.

В помещенной ниже подборке заметок описаны различные по сложности устройства, предложенные радиолюбителями-читателями. Выпрямителям и стабилизаторам в заметках уделено минимум внимания.

Защитные устройства разделяются на две группы: встроенные в стабилизатор и воздействующие на его регулирующий транзистор (например, устройство В. Захарченко) и автономные, содержащие отдельный ключевой элемент (устройство В. Мельникова). Устройства второй группы чаще называют электронными предохранителями. Защитное устройство Н. Цесарука занимает промежуточное положение между этими группами.

Некоторые виды нагрузки имеют свойство сильно перегружать блок питания в момент включения в сеть, вызывая ложное срабатывание защитного устройства. Отмечены также случаи, когда в момент включения усилителя НЧ из-за резкого всплеска тока через громкоговоритель усилителя выходили из строя динамические головки громкоговорителей (разрушались их звуковые катушки). Защитное устройство Л. Выскубова и В. Макарова позволяет устранить эти недостатки.

Кажущаяся сложность защитного устройства Н. Цесарука окупается высокими эксплуатационными характеристиками, в частности быстродействием и надежностью защиты.

Нередко радиолюбители оснащают блоки питания только лампами накаливания или электронно-оптическими индикаторами, сигнализирующими о перегрузке. Подобные устройства целесообразны в большинстве случаев, иногда же индикатора вообще бывает достаточно, чтобы вовремя зафиксировать перегрузку блока питания и отключить его от сети. Поэтому редакция сочла возможным включить в подборку описания и этих индикаторов.

Защитное устройство стабилизатора блока питания, схема которого показана на рис. 1, обладает высоким быстродействием и хорошей «релейностью”, то есть малым влиянием на характеристики блока в рабочем режиме и надежным закрыванием регулирующего транзистора Т2 в режиме перегрузки. Защитное устройство состоит из тринистора Д1, диодов Д2 и Д3 и резисторов R2 и R3. Оно работает следующим образом. В рабочем режиме тринистор Д1 закрыт и напряжение на базе транзистора Т1 равно напряжению стабилизации цепочки стабилитронов Д4, Д5. При перегрузке ток через резистор R2 и падение напряжения на нем достигают величины, достаточной для открывания тринистора Д1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепочку стабилитронов Д4, Д5. что приводит к закрыванию транзисторов Т1 и Т2.



Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно нажать и отпустить кнопку Кн1. При этом тринистор закроется, а транзисторы Т1 и Т2 вновь откроются. Резистор R3 и диоды Д2, Д3 защищают управляющий переход тринистора Д1 от перегрузок по току и напряжению соответственно.

Стабилизатор обладает следующими основными параметрами: входное напряжение 28—38 В, выходное стабилизированное напряжение — 24 В; коэффициент стабилизации — около 30; ток срабатывания защиты — 2 А. быстродействие — несколько микросекунд.

Транзистор Т2 можно заменить на КТ802А, КТ805Б, а Т1 — на П307— П309. КТ601, КТ602 с любым буквенным индексом. Тринистор Д1 может быть любым из серии КУ201, кроме КУ201А и КУ201Б.

В. Захарченко г. Киев

* * *

Стабилизатор блока питания, схема которого представлена на рис. 2, может быть защищен от перегрузок и коротких замыканий нагрузки введением всего двух деталей — тринистора Д2 и резистора R5. Защитное устройство срабатывает, когда ток нагрузки превысит определенное пороговое значение, определяемое сопротивлением резистора R5. В этот момент падение напряжения на этом резисторе достигает напряжения открывания тринистора Д2 (около 1 В), он открывается и напряжение на базе транзистора Т1 уменьшается почти до нуля. Поэтому транзистор Т1, а вслед за ним и Т2 закрываются, отключая цепь нагрузки.



Для возвращения стабилизатора в исходный режим нужно кратковременно нажать на кнопку Кн1. Резистор R3 служит для ограничения тока базы транзистора Т2. Резистор R5 наматывают медным проводом.

Номинальное входное напряжение стабилизатора — 40 В, выходное можно регулировать от 27 В почти до нуля. Максимальный ток нагрузки — 2 А.

Вместо транзистора П701А можно использовать КТ801А, КТ801Б. Транзистор Т2 можно заменить на КТ803А, КТ805А, КТ805Б, П702, П702А.

А. Бизер г. Херсон

Примечание редакции. Выходное сопротивление стабилизатора можно уменьшить на величину сопротивления резистора R5, если изменить место его включения (как показано на рис. 2 штриховыми линиями). Чтобы избежать случаев ложного срабатывания защиты от зарядного тока конденсатора С2 при включении блока питания в сеть, этот конденсатор лучше изъять из устройства.

* * *

Особенностью электронного предохранителя стабилизатора, схема которого изображена на рис. 3, является возможность регулирования тока срабатывания. Предохранитель собран на транзисторах Т1 и Т2 (в его состав входят также резисторы R1—R4, стабилитрон Д1, переключатель В1 и лампа накаливания Л1). Устанавливают требуемое значение тока срабатывания переключателем В1. Работает устройство следующим образом. В рабочем режиме за счет базового тока, протекающего через резистор R1 (R2 или R3), транзистор Т1 открыт и падение напряжения на нем невелико. Поэтому ток в базовой цепи транзистора Т2 очень мал, стабилитрон Д1, включенный в прямом направлении, и транзистор Т2 закрыты.



С увеличением тока нагрузки стабилизатора падение напряжения на транзисторе Т1 увеличивается. В некоторый момент стабилитрон Д1 открывается, вслед за ним открывается транзистор Т2, что приводит к закрыванию транзистора Т1. Теперь на этом транзисторе падает почти все входное напряжение и ток через нагрузку резко уменьшается до нескольких десятков миллиампер. Лампа Л1 загорается, указывая на срабатывание предохранителя. Возврат его в исходный режим производят кратковременным отключением от сети.

Входное напряжение устройства, собранного по схеме на рис. 3, равно 50±5 В, выходное стабилизированное можно регулировать в пределах примерно от 1 до 27 В. Коэффициент стабилизации — около 20. Для повышения температурной стабильности выходного напряжения последовательно со стабилитроном Д3 включен еще один стабилитрон Д2 в прямом направлении.

Транзисторы Т1 и Т4 установлены на теплоотводах с эффективной площадью теплового рассеяния около 250 см2 каждый. Стабилитроны Д2 и Д3 укреплены на медной теплоотводящей пластине размерами 150х40х4 мм. Налаживание электронного предохранителя сводится к подбору резисторов R1—R3 по требуемому току срабатывания. Лампа Л1 — КМ60-75.

В. Мельников, г. Карталы Челябинской обл.

* * *

Описываемое электронно-механическое устройство представляет собой быстродействующий предохранитель с поэтапным срабатыванием сначала его электронной части, а затем электромеханической. Схема устройства, совмещенного со стабилизатором, показана на рис. 4. Оно состоит из транзистора Т1, нагруженного двухобмоточным электромагнитным реле Р1, стабилитрона Д2, диодов Д1, Д3 и резисторов R1 и R2.



Каскад на транзисторе Т1 сравнивает напряжение на резисторе R2, пропорциональное току нагрузки стабилизатора, с напряжением на стабилитроне Д2. включенном в прямом направлении. При перегрузке стабилизатора напряжение на резисторе R2 становится больше напряжения на стабилитроне и транзистор Т1 открывается. Благодаря действию положительной обратной связи между цепями коллектора и базы этого транзистора в системе транзистор Т1 — реле Р1 развивается блокинг-процесс.

Длительность импульса — около 30 мс (в случае применения реле РМУ, паспорт РС4.533.360СП). Во время импульса напряжение на коллекторе транзистора Т1 резко уменьшается. Это падение напряжения через диод Т3 передается на базу регулирующего транзистора Т2 стабилизатора (напряжение на базе транзистора становится положительным относительно эмиттера), транзистор закрывается и ток через цепь нагрузки резко уменьшается.

Одновременно с открыванием транзистора Т1 начинает увеличиваться ток через коллекторную обмотку реле Р1, и примерно через 10 мс оно срабатывает, самоблокируется и отключает цепь нагрузки контактами P1/1. По окончании блокинг-процесса транзистор Т1 закрывается, реле Р1 остается включенным, а стабилизатор — обесточенным. Для восстановления исходного режима на короткое время отключают блок питания от сети. Быстродействие электронной защиты зависит от частотных свойств транзисторов Т1 и Т2 и скорости нарастания тока через коллекторную обмотку реле P1 (то есть от собственной емкости и индуктивности рассеяния обмоток реле) и не превышает нескольких десятков микросекунд. Защитное устройство срабатывает при токе нагрузки, равном 0,4 А.

Стабилизатор блока обладает коэффициентом стабилизации около 50. Номинальное входное напряжение 20 В, выходное — 15 В. Порог срабатывания защиты можно сделать регулируемым, для чего параллельно резистору R2 включают переменный резистор сопротивлением 10—20 Ом, к среднему выводу которого и подключают провод от вывода к базовой обмотки реле Р1.

Двухобмоточное реле можно изготовить самостоятельно по методике, описанной в «Радио”, 1974, № 11, с. 35. Контакты реле должны быть рассчитаны на размыкание максимального тока нагрузки.

Н. Цесарук, г. Тула

* * *

В защитном устройстве, схема которого показана на рис. 5, использован тиристорный оптрон (Oп1) Устройство отличается быстродействием и универсальностью. Оно работает следующим образом. При токе нагрузки, меньшем порогового, электронный ключ, собранный на транзисторах Т1—Т3, открыт базовым током, протекающим через резисторы R4 и R1, светится индикаторная лампа Л1, а оптрон Oп1 находится в выключенном состоянии, то есть его светодиод не излучает света и фототиристор закрыт.



Как только ток нагрузки достигает порогового значения, падение напряжения на резисторах R5 и R6 увеличивается настолько, что яркость свечения светодиода оптрона становится достаточной для открывания фототиристора. Его сопротивление становится очень малым, и на базу транзистора Т1 поступает положительное напряжение, закрывающее электронный ключ. При этом напряжение на нагрузке резко уменьшается, лампа Л1 гаснет. Ток, протекающий через фототиристор и резисторы R4 и R1, достаточен для удержания оптрона во включенном состоянии

Для того чтобы вернуть устройство в исходное состояние, нужно на короткое время нажать на кнопку Кн1. При этом фототиристор оптрона оказывается замкнутым накоротко и закрывается, электронный ключ поддерживается закрытым, а конденсатор С1 разряжается. В первый момент после отпускания кнопки электронный ключ остается закрытым и плавно открывается по мере заряда конденсатора С1 через резистор R1 Напряжение на нагрузке плавно увеличивается до номинального (описанный процесс происходит и при включении блока питания в сеть). Этим полностью устраняется опасность первоначального броска тока через нагрузку, который нередко является причиной выхода из строя элементов нагрузки и блока питания. Отсутствие броска тока, кроме этого, позволяет избежать ложных срабатываний защитного устройства.

Диоды Д1 и Д2 ускоряют процесс перехода транзисторов электронного ключа от режима насыщения к закрыванию при возникновении перегрузки. Порог срабатывания ключа устанавливают переменным резистором R5. Лампу Л1 выбирают исходя из требуемого номинального напряжения на нагрузке. Транзисторы Т2 и Т3 следует устанавливать на теплоотвод площадью не менее 100—120 см2.

Максимальное входное напряжение, при котором возможно использование описываемого устройства, — 50 В; максимальный ток нагрузки — 5 А; минимальный ток срабатывания — 0.4 А. Паление напряжения на защитном устройстве при открытом электронном ключе не превышает 1,5 В. Устройство может применяться для защиты выпрямителей, стабилизаторов напряжения, транзисторов мощных каскадов усилителей НЧ.

В. Макаров, Л. Выскубов, г. Ленинград

* * *

Схема сигнализатора перегрузки на лампе накаливания для стабилизатора с защитным устройством показана на рис. 6. Если стабилизатор не оснащен защитным устройством, но выполнен так, что он в состоянии выдерживать режим перегрузки в течение нескольких секунд, то такой сигнализатор в некоторой степени может играть роль защитного устройства с ручным отключением от сети.



Если нагрузка не превышает максимально допустимой, падение напряжения на стабилизаторе невелико, поэтому транзистор Т1 закрыт и лампа Л1 не горит. При увеличении нагрузки, когда стабилизатор выходит из режима стабилизации, падение напряжения на нем увеличивается, транзистор открывается и загорается лампа Л1, сигнализирующая о перегрузке.

Сигнализатор испытан при входном напряжении стабилизатора 30 В, выходном — 24 В. Лампу Л1 выбирают в соответствии с допустимыми током стабилитрона Д1 и коллекторным током транзистора Т1.

Е. Строганов, г. Москва

* * *

На рис. 7 представлена схема экономичного сигнализатора на светодиоде (Д2). При перегрузке стабилизатора или срабатывании защитного устройства падение напряжения на стабилизаторе резко увеличивается, открывается стабилитрон Д1 и включается светодиод Д2.



Напряжение стабилизации стабилитрона Д1 должно быть меньше минимального входного напряжения стабилизатора и больше максимального падения напряжения на стабилизаторе в рабочем режиме. Резистор R1 ограничивает ток через светодиод Д2 на уровне максимально допустимого.

НЕТ КОММЕНТАРИЕВ

ОСТАВЬТЕ ОТВЕТ